Biomechanical proprieties of decellularized porcine common carotid arteries
نویسندگان
چکیده
Roy, Sylvain, Paolo Silacci, and Nikolaos Stergiopulos. Biomechanical proprieties of decellularized porcine common carotid arteries. Am J Physiol Heart Circ Physiol 289: H1567–H1576, 2005. First published May 20, 2005; doi:10.1152/ajpheart.00564.2004.—To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Rupture tests were conducted. Inner diameter and wall thickness were measured by echo tracking during pressure inflation from 10 to 145 mmHg. Distensibility and incremental elastic modulus were computed. At 10 mmHg, mean diameter of decellularized arteries was 5.38 mm, substantially higher than controls (4.1 mm), whereas decellularized and control arteries reached the same internal diameter (6.7 mm) at 145 mmHg. Wall thickness decreased 16% for decellularized and 32% for normal arteries after pressure was increased from 10 to 145 mmHg. Decellularized arteries withstood pressure 2,200 mmHg before rupture. At 145 mmHg, decellularization reduced compliance by 66% and increased incremental elastic modulus by 54%. Removal of cellular elements from media led to changes in arterial dimensions. Collagen fibers engaged more rapidly during inflation, yielding a stiffer vessel. Distensibility was therefore significantly lower (by a factor of 3) in decellularized than in normal vessels: reduced in the physiological range of pressures. In conclusion, decellularization yields vessels that can withstand high inflation pressures with, however, markedly different geometrical and biomechanical properties. This may mean that the potential use of a decellularized artery as a scaffold for the creation of xenografts may be compromised because of geometrical and compliance mismatch.
منابع مشابه
Biomechanical properties of decellularized porcine common carotid arteries.
To analyze the effects of decellularization on the biomechanical properties of porcine common carotid arteries, decellularization was performed by a detergent-enzymatic procedure that preserves extracellular matrix scaffold. Internal diameter, external diameter, and wall thickness were measured by optical microscopy on neighboring histological sections before and after decellularization. Ruptur...
متن کاملCovalent linkage of heparin provides a stable anti‐coagulation surface of decellularized porcine arteries
Establishing thrombosis-resistant surface is crucial to develop tissue-engineered small diameter vascular grafts for arterial reconstructive procedures. The objective of this study was to evaluate the stability and anti-coagulation properties of heparin covalently linked to decellularized porcine carotid arteries. Cellular components of porcine carotid arteries were completely removed with chem...
متن کاملReconstruction of small diameter arteries using decellularized vascular scaffolds.
Although artificial vessels are available for large diameter arteries, there are no artificial vessels for small diameter arteries of < 4 mm. We created a decellularized vascular scaffold (length, 10 mm; outer diameter, 1.5 mm; inner diameter, 1.3 mm) from rat abdominal arteries. We measured the biomechanical characteristics of the scaffolds, implanted them to defects made in rat carotid arteri...
متن کاملBiomechanical properties of decellularized porcine pulmonary valve conduits.
Tissue-engineered heart valves constructed from a xenogeneic or allogeneic decellularized matrix might overcome the disadvantages of current heart valve substitutes. One major necessity besides effective decellularization is to preserve the biomechanical properties of the valve. Native and decellularized porcine pulmonary heart valve conduits (PPVCs) (with [n = 10] or without [n = 10] cryoprese...
متن کاملDecellularization of Human Internal Mammary Artery: Biomechanical Properties and Histopathological Evaluation
This study undertook to create small-diameter vascular grafts and assess their structure and mechanical properties to withstand arterial implantation. Twenty samples of intact human internal mammary arteries (IMAs) were collected and decellularized using detergent-based methods. To evaluate residual cellular and extracellular matrix (ECM) components, histological analysis was performed. Moreove...
متن کامل